surveillance::hhh4
vignettes/BNV.Rmd
BNV.Rmd
options(digits = 4) # for more compact numerical outputs
library("HIDDA.forecasting")
library("ggplot2")
In this vignette, we use modelling and forecasting methods provided by:
The corresponding software reference is:Hoehle M, Meyer S, Paul M (2023). surveillance: Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena. R package version 1.22.1, https://CRAN.R-project.org/package=surveillance.
We use age-stratified norovirus surveillance data from Berlin, Germany, together with an age-structured social contact matrix from the POLYMOD survey, as provided in the R package hhh4contacts:
library("hhh4contacts")
These data have been originally analyzed in:
Meyer S and Held L (2017): “Incorporating social contact data in spatio-temporal models for infectious disease spread”. Biostatistics, 18(2), pp. 338–351. DOI: 10.1093/biostatistics/kxw051
Here we only consider models for spatially aggregated counts, i.e., without additional stratification by city district. More specifically, we will analyse age-stratified weekly counts \(Y_{gt}\) in a similar way as for the reference model 6 in:
Held L, Meyer S and Bracher J (2017): “Probabilistic forecasting in infectious disease epidemiology: the 13th Armitage lecture”. Statistics in Medicine, 36(22), pp. 3443–3460. DOI: 10.1002/sim.7363
BNV <- noroBE(by = "agegroup", agegroups = c(1, 2, 2, 4, 4, 2),
timeRange = c("2011-w27", "2016-w26"))
BNV
## -- An object of class sts --
## freq: 52
## start: 2011 27
## dim(observed): 260 6
##
## Head of observed:
## 00-04 05-14 15-24 25-44 45-64 65+
## [1,] 2 1 0 0 6 11
##
## Head of neighbourhood:
## 00-04 05-14 15-24 25-44 45-64 65+
## 00-04 1.899 1.146 0.9775 3.18 1.315 0.5281
(NGROUPS <- ncol(BNV))
## [1] 6
(GROUPS <- colnames(BNV))
## [1] "00-04" "05-14" "15-24" "25-44" "45-64" "65+"
We can plot the observed age-stratified counts using the default plot method for “sts” objects:
plot(BNV)
We will use the first four seasons, from week 2011/27 to week 2015/26, as training data, and assess forecasts during the following year (2015/27 to 2016/26).
TRAIN <- 2:(4*52)
TEST <- max(TRAIN) + 1:52
There is also an autoplot
variant based on
ggplot2, which we use to plot the age-specific
incidence based on the population fractions contained in the
BNV
object,
(popfracsBE <- population(BNV)[1,])
## 00-04 05-14 15-24 25-44 45-64 65+
## 0.04594 0.07755 0.10438 0.30393 0.27879 0.18940
and Berlin’s total population,
(popBE <- sum(pop2011)) # also from the "hhh4contacts" package, see ?pop2011
## [1] 3501872
as follows:
autoplot(BNV, population = 100000/popBE) +
## population: divides observed(BNV) by population(BNV)/(100000/popBE)
## Mod 1: highlight the Christmas period in each year
geom_col(aes(fill = epochInYear %in% c(52, 1)),
width = 7, show.legend = FALSE) +
scale_fill_manual(values = c("black", "red")) +
## Mod 2: separate training and test periods by a vertical line
geom_vline(aes(xintercept = as.numeric(date)[4*52] + .5), linetype = 2) +
ylab("Incidence [per 100 000 inhabitants]") + scale_y_sqrt()
The neighbourhood
slot of the BNV
object
contains a social contact matrix derived from the German subset of the
POLYMOD
survey, aggregated to match the age groups of the surveillance
data:
neighbourhood(BNV)
## 00-04 05-14 15-24 25-44 45-64 65+
## 00-04 1.89888 1.1461 0.9775 3.180 1.315 0.5281
## 05-14 0.21287 3.4406 0.9455 2.381 1.124 0.3861
## 15-24 0.05882 0.5168 4.5000 2.185 1.433 0.2731
## 25-44 0.26736 0.7049 1.2431 3.812 1.951 0.5035
## 45-64 0.11047 0.3023 0.8488 2.282 2.907 0.5727
## 65+ 0.05224 0.2537 0.2537 1.373 1.657 1.6642
## attr(,"agedistri")
## 00-04 05-14 15-24 25-44 45-64 65+
## 0.06873 0.15598 0.18378 0.22239 0.26564 0.10347
Each entry gives the average number of contact persons of a certain age group a participant (of a certain age group) reports on a randomly assigned day, see Mossong et al. (2008, PLoS Medicine, DOI: 10.1371/journal.pmed.0050074). The “agedistri” attribute gives the age distribution of the participants.
We will employ an improved estimate of this contact matrix, which ensures reciprocity on the population level, i.e., the overall number of contacts of age group i with age group j should be the same as vice versa, see Wallinga et al (2006, American Journal of Epidemiology, DOI: 10.1093/aje/kwj317):
(C_reci <- contactmatrix(which = "reciprocal", grouping = c(1, 2, 2, 4, 4, 2)))
## contact
## participant 00-04 05-14 15-24 25-44 45-64 65+
## 00-04 1.8991 0.7440 0.8362 2.952 1.142 0.5003
## 05-14 0.4408 3.3978 0.8150 2.421 1.092 0.4026
## 15-24 0.3681 0.6055 4.1941 2.488 1.588 0.2944
## 25-44 0.4462 0.6176 0.8544 3.949 2.045 0.6357
## 45-64 0.1882 0.3037 0.5945 2.229 2.894 0.7361
## 65+ 0.1213 0.1649 0.1623 1.020 1.084 1.6423
## attr(,"agedistri")
## 00-04 05-14 15-24 25-44 45-64 65+
## 0.04594 0.07755 0.10438 0.30393 0.27879 0.18940
We can check reciprocity with respect to Berlin’s age distribution (also given in the “agedistri” attribute):
is_reciprocal <- function (C, population, tol = 0.001) {
Cpop <- C * population
all.equal(Cpop, t(Cpop), tolerance = tol, check.attributes = FALSE)
}
stopifnot(is_reciprocal(C_reci, popfracsBE))
The hhh4contacts package provides a simple plotting function for such contact matrices:
NB: A general implementation to extract social contact matrices from surveys, including from POLYMOD, is available via the dedicated R package socialmixr, and I recommend to use that package in future projects.
Given the counts from the previous week, \(Y_{.,t-1}\), we assume \(Y_{gt}\) to follow a negative binomial
distribution with a group-specific overdispersion parameter and mean
\[
\mu_{gt} = \nu_{gt} + \phi_{gt} \sum_{g'} c_{g'g} Y_{g',t-1}
.
\] The endemic log-linear predictor \(\nu_{gt}\) contains group-specific
intercepts, a Christmas effect (via a simple indicator for the calendar
weeks 52 and 1), and group-specific seasonal effects of \(\sin(\omega t)\) and \(\cos(\omega t)\) terms, \(\omega=2\pi/52\). The epidemic log-linear
predictor \(\phi_{gt}\) also contains
group-specific intercept, but shared seasonality and no Christmas
effect. For the contact matrix we use C_reci
from above,
normalized to a transition matrix C_reci/rowSums(C_reci)
,
and compare this to models assuming homogeneous or no mixing between age
groups, and a model where we estimate a power transformation \(C^\kappa\) via profile likelihood
(hhh4contacts::fitC()
) as in Meyer and Held (2017, see
demo("hhh4contacts")
for a spatially disaggregated version
of the model).
DATAt <- list(t = epoch(BNV) - 1,
christmas = as.integer(epochInYear(BNV) %in% c(52, 1)))
mg_Creci <- hhh4(BNV, list(
end = list(f = addSeason2formula(~0 + fe(1, unitSpecific = TRUE) + christmas,
S = rep(1, NGROUPS))),
ne = list(f = addSeason2formula(~0 + fe(1, unitSpecific = TRUE)),
weights = matrix(1, NGROUPS, NGROUPS),
scale = C_reci, normalize = TRUE),
family = "NegBinM", data = DATAt, subset = TRAIN))
Alternative 1: assuming homogeneous mixing between age groups
Alternative 2: assuming no mixing between age groups
Alternative 3: with a power transformation of the contact matrix
mg_Cpower <- fitC(mg_Creci, C_reci, normalize = TRUE, truncate = TRUE)
Simple AIC comparison of the model fits to the training period:
AIC(mg_Creci, mg_Chom, mg_Cdiag, mg_Cpower)
## df AIC
## mg_Creci 33 6051
## mg_Chom 33 6132
## mg_Cdiag 33 6055
## mg_Cpower 34 6035
Parameter estimates from the model with power-adjusted contact matrix:
summary(mg_Cpower, maxEV = TRUE, reparamPsi = TRUE,
amplitudeShift = TRUE, idx2Exp = TRUE)
##
## Call:
## hhh4(stsObj = object$stsObj, control = control)
##
## Coefficients:
## Estimate Std. Error
## ne.A(2 * pi * t/52) 0.2935 0.0846
## ne.s(2 * pi * t/52) -0.7187 0.1296
## exp(ne.1.00-04) 0.6814 0.1012
## exp(ne.1.05-14) 0.2502 0.0833
## exp(ne.1.15-24) 0.0892 0.0635
## exp(ne.1.25-44) 0.1729 0.0436
## exp(ne.1.45-64) 0.4091 0.0506
## exp(ne.1.65+) 0.9283 0.0790
## exp(end.christmas) 0.2557 0.0894
## exp(end.1.00-04) 4.5900 0.5535
## exp(end.1.05-14) 0.4942 0.2596
## exp(end.1.15-24) 1.7114 0.2172
## exp(end.1.25-44) 4.5869 0.6043
## exp(end.1.45-64) 3.6639 0.5819
## exp(end.1.65+) 6.7497 1.0767
## end.A(2 * pi * t/52).00-04 0.9352 0.1416
## end.A(2 * pi * t/52).05-14 0.4800 0.5182
## end.A(2 * pi * t/52).15-24 0.7334 0.1015
## end.A(2 * pi * t/52).25-44 0.4391 0.0971
## end.A(2 * pi * t/52).45-64 0.6105 0.1456
## end.A(2 * pi * t/52).65+ 1.4792 0.1871
## end.s(2 * pi * t/52).00-04 -1.0626 0.0646
## end.s(2 * pi * t/52).05-14 0.8237 0.3417
## end.s(2 * pi * t/52).15-24 -1.5081 0.0516
## end.s(2 * pi * t/52).25-44 -1.5711 0.0541
## end.s(2 * pi * t/52).45-64 -2.0013 0.0745
## end.s(2 * pi * t/52).65+ -2.1941 0.0700
## overdisp.00-04 0.0775 0.0187
## overdisp.05-14 0.4756 0.1305
## overdisp.15-24 0.0695 0.0526
## overdisp.25-44 0.0404 0.0182
## overdisp.45-64 0.0361 0.0133
## overdisp.65+ 0.0756 0.0133
##
## Epidemic dominant eigenvalue: 0.48 -- 0.86
##
## Log-likelihood: -2983
## AIC: 6035
## BIC: 6209
##
## Number of units: 6
## Number of time points: 207
##
## Power-adjusted C: 0.40 (95% CI: 0.23 to 0.67)
## plot estimated endemic-epidemic decomposition
##plot(mg_Cpower, units = NULL, pch = 20,
## legend = 2, legend.args = list(legend = c("epidemic", "endemic")))
## additional decomposition into AR effects and effects of other age groups
plotHHH4_fitted_groups(mg_Cpower, groups = GROUPS, units = NULL, pch = 20,
legend = 2, legend.args = list(legend = c("from other groups", "within group", "endemic")))
par(mfrow = c(2,1), mar = c(0,5,1,1), las = 1)
plotHHH4_season_groups(mg_Cpower, component = "end", seasonStart = 27,
col = c("#D53E4F", "#FC8D59", "#FEE08B", "#E6F598", "#99D594", "#3288BD"),
conf.level = NULL, xaxt = "n", xlab = "", ylim = c(0, 5), yaxs = "i",
ylab = "endemic seasonal effects")
par(mar = c(3,5,1,1))
with(data.frame(time = epochInYear(BNV) + (year(BNV)-2011)*52,
maxEV = getMaxEV(mg_Cpower))[1:52,],
plot(maxEV ~ time, ylim = c(0, 1), type = "l", lwd = 3, yaxs = "i", xlab = "",
ylab = "epidemic proportion", panel.first = quote(abline(v=52.5, lty=3))))
Parameters are updated sequentially in the one-step-ahead procedure. However, the power parameter of C is held fixed at the initial estimate to reduce the runtime.
For each model, we compute the 52 “rolling” one-week-ahead forecasts
during the last season. This takes roughly 4 seconds per model (we could
parallelize using the cores
argument of
oneStepAhead()
).
fits <- list("reciprocal" = mg_Creci,
"homogeneous" = mg_Chom,
"no mixing" = mg_Cdiag,
"power-adjusted" = mg_Cpower)
owas <- lapply(fits, oneStepAhead, tp = range(TEST)-1, type = "rolling",
which.start = "final", verbose = FALSE)
save(owas, file = "BNV_owa.RData")
mapply(function(x, main) pit(x, plot = list(main = main, ylab = "Density")),
x = owas, main = names(owas))
## reciprocal homogeneous no mixing power-adjusted
## 0.8360 0.6753 0.3836 0.7077
## reciprocal homogeneous no mixing power-adjusted
## 0.5292 0.7621 0.8302 0.6839
owas_scores <- lapply(owas, scores, which = c("dss", "logs"), individual = TRUE, reverse = FALSE)
lapply(owas_scores, function(x) cbind(apply(x, 3:2, mean), overall=apply(x, 3, mean)))
## $reciprocal
## 00-04 05-14 15-24 25-44 45-64 65+ overall
## dss 4.139 1.448 1.292 3.070 3.217 5.022 3.031
## logs 2.902 1.516 1.537 2.449 2.568 3.424 2.399
##
## $homogeneous
## 00-04 05-14 15-24 25-44 45-64 65+ overall
## dss 4.368 1.431 1.288 3.051 3.183 5.234 3.093
## logs 2.984 1.501 1.531 2.446 2.552 3.508 2.420
##
## $`no mixing`
## 00-04 05-14 15-24 25-44 45-64 65+ overall
## dss 3.910 1.450 1.320 3.030 3.324 4.986 3.003
## logs 2.834 1.504 1.544 2.422 2.601 3.408 2.385
##
## $`power-adjusted`
## 00-04 05-14 15-24 25-44 45-64 65+ overall
## dss 3.979 1.464 1.325 3.048 3.257 5.001 3.012
## logs 2.850 1.518 1.549 2.434 2.582 3.415 2.391
owas_quantiles <- lapply(owas, quantile, probs = 1:99/100)
.osaplot <- function (model) {
sapply(seq_along(GROUPS), function (group) {
osaplot(quantiles = owas_quantiles[[model]][,group,], probs = 1:99/100,
observed = owas[[model]]$observed[,group],
scores = owas_scores[[model]][,group,],
start = TEST[1], xlab = "", main = GROUPS[group],
fan.args = list(ln = c(0.1,0.9), rlab = NULL),
key.args = if(group==length(GROUPS)) list(start=max(TEST)-2, rcex=0.6),
scores.args = list(xaxt = "n", ylim = range(owas_scores[[model]]),
lab = c(7,3,0), panel.first = grid(nx=NA,ny=NULL,lty=1)),
legend.args = if(group==length(GROUPS)) list())
})
}
.osaplot("no mixing")